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Overview

This project is investigating programming language technology—program
analysis and program rewriting—for defending software systems against at-
tacks from mobile code and system extensions. The approach promises to
support a wide range of flexible, fine-grained access-control and information-
flow policies. Only a small trusted computing base seems to be required.
And the run-time costs of enforcement should be low.

Our progress over the past year is summarized below. Details can be
found in the publications whose citations are given following all the sum-

maries. A list of DoD interactions and technology transitions appears at the
end of the report.

In-lined Reference Monitors

This past year, working with Ph.D. student Kevin Hamlen, Morrisett and
Schneider developed a more refined characterization of what policies can be
enforced using reference monitors. This new work extends earlier work by
Schneider, now taking into account the limits of computability. Specifically,
we developed a model based on standard Turing machines, adapted Schnei-

- der’s criteria for enforceable security policies, and introduced computability




requirements. We also integrated static analysis and program rewriting into
the model.

By providing this unifying model, and by basing it on Turing machines,
we were able to compare the relative power of the various enforcement mech-
anisms, and to relate them to standard computability results. For instance,
it was relatively easy to show that the class of policies precisely supported
by static analysis could also be supported by both reference monitors and by
program rewriting. In addition, we found that introducing a computability
requirement on reference monitors was necessary, but not sufficient, for pre-
cise characterization of the class of policies actually realizable by reference
monitors. And we identified a new property, which we call “punctuality”
that provides a more accurate upper bound on the power of reference mon-
itors.

Our most surprising and important results involve program rewriting.
We can show that the class of policies originally characterized by Schneider
does not include all policies enforceable through rewriting (and vice versa).
Indeed, we were able to show that the class of policies enforceable through
rewriting does not correspond to any class of the Kleene hierarchy. This
is a surprising and important result, as it shows that rewriting truly is a
powerful security enforcement technique.

Progress on Prototype IRM. Last year, we developed a prototype IRM
rewriter for the Microsoft CIL, which takes a limited class of policies written
in a very primitive specification language. In essence, the policy writer could
only specify that certain (non-virtual) method calls should be replaced with
alternative method calls. Though limited, we showed that this tool could
be used to effectively enforce practical policies.

This year, we have extended the rewriting tools so that we can perferm
arbitrary rewriting on the CIL code. This was accomplished by building on a
bytecode-rewriting toolkit developed by Microsoft Researchers. In Fall 2002,
Kevin Hamlen and Greg Morrisett visited Microsoft Research in Cambridge
to further develop the APIs and code for doing this manipulation.

Cyclone Compiler

Today, our computing and communications infrastructure is built using un-
safe, error-prone languages such as C or C++ where buffer overruns, for-
mat string errors, and space leaks are not only possible, but frighteningly
common. In contrast, type-safe languages, such as Java, Scheme, and ML,




ensure that such errors either cannot happen (through static type-checking
and automatic memory management) or at least are caught at the point of
failure (through dynamic type and bound checks). This fail-stop guarantee
is not a total solution, but it does isolate the effects of failures, facilitates
testing and determination of the true source of failures, and it enables tools
and methodologies for achieving greater levels of assurance.

The obvious question is: “Why don’t we re-code our infrastructure using -
type-safe languages?” Though such a technical solution looks good on paper,
the cost is simply too large. For instance, today’s operating systems consist
of tens of millions of lines of code. Throwing away all of that C code and
reimplementing it in, say Java, is simply too expensive.

As a step towards these goals, we have been developing Cyclone, a type-
safe programming language based on C. The type system of Cyclone accepts
many C functions without change and uses the same data representations

~and calling conventions as C for a given type constructor. The Cyclone
type system also rejects many C programs to ensure safety. For instance, it
rejects programs that perform (potentially) unsafe casts, that use unions of
incompatible types, that (might) fail to initialize a location before using it,
that use certain forms of pointer arithmetic, or that attempt to do certain
forms of memory management.

All of the analyses used by Cyclone are local (i.e., intra-procedural)
so that we can ensure scalability and separate compilation. The analyses
have also been carefully constructed to avoid unsoundness in the presence of
threads. The price paid is that programmers must sometimes change type
definitions or prototypes of functions, and occasionally they must rewrite
code.

We find that programmers must touch a’i}eﬁt 10% of the. code when
porting from C to Cyclone. Most of the changes involve choosing pointer
representations and only a very few involve region annotations (around 0.6
% of the total changes). This past year, we developed a semi-automatic tooi
that can be used to automate most of these changes.

The performance overhead of the dynamic checks depends upon the ap-
plication. For systems applications, such as a simple web server, we see no

- overhead at all. This is not surprising, as these applications tend to be I/O-
bound. For scientific applications, we were seeing a much larger overhead
(around 5x for a naive port, and 3x with an experienced programmer), due
to array bounds and null pointer checks. To avoid these, over the past year
we incorporated a sophisticated intra-procedural analysis that eliminates
most of those checks. For instance, a simple matrix-multiply now runs as
fast as C code, where before, it was taking over 5x as long.
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‘We also introduced new typing mechanisms that support a wider range of
safe memory management options. Before, we had to restrict programmers
to using only garbage collection, stack allocation, or limited forms of region
allocation, all of which could adversely affect time and space requirements.
This year, we added support for dynamic region allocation, unique pointers,
and reference-counted objects. These mechanisms let programmers control
memory management overheads without sacrificing safety. For instance,
we were able to improve the throughput of the MediaNet streaming media
server by up to 42% and decrease the memory requirements from 8MB to a
few kilobytes using these new features.

Finally, as part of his Ph.D. dissertatlon, Daniel Grossman designed
extensions that support type-safe multi-threading. These extensions, which
we plan to implement in the next year, statically ensure the absence of data
races in programs, thereby avoiding another wide class of security problems.

Secure Program Partitioning

We continue our work in developing secure program partitioning, a novel way
to ensure that data confidentiality and integrity are preserved in distributed
systems that contain untrusted hosts and mutually distrusting principals.
This problem is particularly relevant to information systems used by mutu-
ally distrusting organizations, such as the dynamic coalitions that arise in
military settings. :

In our approach, programs are autamatacaliy partitioned into communi-
cating subprograms that run on the available, partially trusted hosts. The
partitioning automatically extracts a secure communications protocol, so
that if any host is subverted, then only those principals that have explicitly
stated trust in that host need fear a violation of confidentiality. That is,
for a given principal p, the partitioned program we create is robust against
attacks on hosts not trusted by p. To protect data integrity, information
and code are also replicated across the available hosts. Some replicas may
be securely hashed to protect them against subversion of the host on which
they are executing. ‘

We have implemented these techniques in Jif/split, an extension to our
publicly released Jif compiler that statically enforces information flow con-
trol, in conjunction with a distributed run-time system that securely exe-
cutes partitioned and replicated programs while guarding against subverted
or malicious hosts. New protocols have been developed to permit secure
transfer of control between one group of host replicas and another. To un-




derstand the practicality of our approach, secure distributed systems have
been implemented using Jif/split, including various secure auction proto-
cols. Performance of the system is quite reasonable, despite the fine-grained
program partitioning. We are now investigating availability policies in this
framework, which should help defend against denial of service attacks.

Information Flow Semantics. We have also been investigating how to

- define and enforce information flow policies in concurrent, probabilistic, and
nondeterministic systems. Concurrent systems are naturally nondetermin-
istic, because a thread scheduler must decide when to allow various threads
to execute, and this decision is beyond the programmer’s control. Nonde-
terminism is dangerous, because it allows covert communication between
threads, using timing. We have given a new formal definition of security
for concurrent systems; this definition seems to correspond more closely to
an intuitive notion of security than previous definitions do. Further, we
have defined an expressive core concurrent programming language, which
is equipped with a type system for a static analysis that ensures programs
written in this language are secure. Incorporation of this static analysis into
the Jif framework is an obvious next step.

In related ongoing work, we are exploring expressive security conditions
for systems incorporating probabilistic and nondeterministic computation.
Our goal is to bound information flows. Most information flow analyses are
useful only for showing that there is no information flow, but many real-
world systems (for example, password checkers) leak acceptable amounts
of information. We have developed an appropriate program semantics for
modeling such systems and are working towards a logic that can be used to
prove expressive assertions about bounded information flow.

Avoiding Malicious Firmware

After power-up, most computing devices enter a boot phase in which the
hardware configuration is recognized, devices are initialized, and the oper-
ating system is loaded and started. The program that controls this process
is called boot firmware and is typically stored in ROM or other non-volatile
memory. The recent trend is that boot firmware is becoming more com-
plex, as it gains additional responsibilities. Until recently, malicious boot
firmware received relatively little attention. Several factors now conspire to
make for a very worrisome form of attack:

e Boot firmware runs in a privileged mode on bare hardware, prior to
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the start of most security services. Malicious boot firmware could
cause harm in several different ways, most notably by corrupting the

" operating system. Many current security mechanisms assume that the
operating system can be trusted. Thus, malicious boot firmware could
subvert most of the security mechanisms currently deployed at the OS,
application, and enterprise levels. ‘

e Modern boot firmware often consists of modules contributed by mul-
tiple vendors, many of whom might not be visible to end users. Of-
ten these modules are boot-time device drivers for distinct pieces of

‘hardware. The configuration of boot firmware can be quite volatile
as the hardware configuration changes. Many devices support semi-

automated firmware upgrades, so there are many opportunities to in-
troduce malicious boot firmware.

Thus, we consider malicious boot firmware to be a plausible, practical, and
dangerous form of attack. Exploiting this vulnerability should be well within
the means of motivated adversaries such as nation-states and criminal orga-
nizations.

We are focused on detection of malicious boot firmware within systems
based on Open Firmware. Open Firmware is a mature and widely used
standard for boot firmware. Sun Microsystems and Apple both use boot
firmware that conforms to the standard. The most salient feature of Open
Firmware is that it includes an interpreter (or virtual machine) for fcode, a
lightly compiled form of the Forth programming language.

Fcode device drivers, supplied by a wide range of relatively anonymous
vendors, pose a significant risk of introducing malicious code into the boot
program. Our concern is with detection of malicious fcode using static
checks performed during each boot cycle. We check potentially dangerous,
untrusted code each time, prior to execution.

Our safety policy is baked-in; there is no need for the user to specify
anything. The policy consists of three tiers.

Tier 1: Basic Safety. Included in this tier are type safety, memory safety,
stack safety, and control-flow safety. Type safety is the requirement that
each storage location and each computational result has a well-defined type
that can be determined by static analysis prior to running the program.
All assignments and memory references must respect those types. Memory
safety is the requirement that all memory accesses are to legal (i.e., allo-
cated) locations. Stack safety is the requirement that the program obeys




an appropriate discipline with respect to its own calling stack. Control-
flow safety is the requirement that jump targets are locations containing
executable instructions within an appropriate subprogram.

Tier 2: Device Encapsulation. Code supplied by different vendors,
typically device drivers, will be loaded into the boot program and must
coexist. We require that these programs respect each others’ boundaries,
and they only interact through published interfaces. Of critical importance

is the requirement that each device be operated solely by its own device
driver. :

Tier 3: Structural Safety. Code supplied by vendors will interact with
Open Firmware services through an API that prevents unsafe calls. This
safety arises for three reasons: the API exposes only a restricted, safer
 subset of functionality, the implementation performs runtime checks, and
our verifier can further restrict the way the API is invoked. What must be
verified is that the untrusted program really uses the API as specified and
does not bypass it or tamper with its implementation.

For programs written in high-level languages, these properties are clear
and often implicit in the definition of the language. For instance, Java en-
forces almost all type correctness at compile time. Language features, such
as Java’s private modifier, can be used to enforce modularity. In such lan-
guages, interaction between specific code modules is evident on inspection.
However, our verification is performed on fcode, a primitive language in
which none of this would be easy. Our verifier relies on the fact that the
fcode program is the result of compiling from a high level language—Java.
This special compiler produces particularly well-structured and annotated
fcode, in which constructs derived from Java are readily recognized.

Our prototype system consists of three interlinked elements: the Java
VM-to-fcode compiler J2F, the BootSafe verifier, and Java API for BootSafe-
compliant Open Firmware drivers along with runtime support for the APL
We are building prototypes of these three elements. Vendors will write device
drivers in Java and use our compiler to generate fcode. Users will trust our
verifier and our runtime support (both installed in their boot platform), but
will not need to trust the device driver code received from the vendor.
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DoD Interactions and Technology Transitions

e As a consultant to DARPA/IPTO, Schneider chairs the independent
evaluation team for the OASIS Dem/Val prototype project. This
project funds two consortia to design a battlespace information system
intended to tolerate a class A Red Team attack for 12 hours.




e Greg Morrisett spent nine months visiting Microsoft’s Cambridge Re-
- search Laboratory, where he worked with researchers on programming

language and security technology. In particular, Morrisett worked on
the development of Microsoft’s tools for automatically finding secu-
rity flaws in production code, based on his experience with Cyclone.
He also worked with student Kevin Hamlen and Microsoft researchers

on the implementation of the .NET rewriting tool for inline reference
monitors. '

Further public releases of Myers’ Jif compiler have been made available
at the Jif web site, http://www.cs.cornell.edu/jif. The Jif language
extends the Java programming language with support for information
flow control. The Jif compiler is implemented on top of the Polyglot ex-
tensible compiler framework for Java. The Polyglot framework has also
been released publicly at http://www.cs.cornell.edu/projects /polyglot,
and researchers at Princeton University are using this framework in
their own research. The releases of both Jif and Polyglot are provided
as Java source code and work on Unix and Windows platforms.

AT&T research is working with us to develop the Cyclone language,
compiler, and tools. In addition, researchers at the University of
Maryland, the University of Utah, Princeton, and the University of

Pennsylvania, and Cornell are all using Cyclone to develop research
prototypes.
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